
Underperformance of Current State of the Art Differential Evolution Algorithms as
a result of implementation differences

Carlos A. Ramirez
Graduate School of Arts and Sciences

The University of Tokyo

Alex S. Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract—Differential evolution (DE) is a powerful stochastic
search technique for solving numerical optimization problems.
Success of DE in solving a specific problem depends on
appropriately chosen parameter settings.

Current state-of-the-art DE algorithms implement adaptive
and self-adaptive methods to control parameter settings and
mutation strategies automatically in DE. Unfortunately, minor
implementation differences in these algorithms drastically af-
fect their behavior. In this paper, we evaluated the performance
of slightly different algorithm implementations on a set of well-
known benchmark functions. Computational results show that
DE and state-of-the-art DE algorithms with certain minor
differences in their implementations under-perform on the
majority of test problems.

1. Introduction

Differential Evolution (DE) is an Evolutionary Algo-
rithm (EA) that was proposed by Price and Storn [1], [2]
for solving numerical optimization problems. It is simple but
robust and effective in solving a broad range of optimization
problems. Its performance greatly depends on the control
parameter settings and the mutation strategies implemented.

In DE, different mutation strategies and control param-
eter settings may result in important differences of perfor-
mance. Additionally, optimal settings for these parameters
are problem-dependent. Since tunning the control parame-
ters is a significant problem in practice, novel adaptive and
self-adaptive mechanisms for automatic parameter settings
selection have been developed in the past decade [3], [4].

The above mentioned novel solutions implement dif-
ferent strategies not only to adjust the control parameters
but also to tweak settings in the mutation mechanisms and
crossover operations during the search process. Because
these implementations tend to become more and more com-
plex in newer DE algorithms, authors may implement ver-
sions of the algorithm components that are slightly different
from the original specification. In some cases, these unno-
ticed deviations may introduce serious performance issues.

In this paper we evaluate the performance of different
algorithm implementations of the standard DE and the state
of the art SHADE [7] algorithms. The primary comparison

is based on the CEC2014 benchmarks. Additionally, we de-
signed a test function that introduces plateaus to the problem
search space, allowing us to test cases where multiple vector
parents could share the same best fitness value.

First, in section 2 we review differential evolution
briefly, including state of the art algorithms. In section 3 we
study different implementation strategies that may be used
in different components of DE and SHADE algorithms. Sec-
tion 4 presents the empirical evaluation of the different DE
and SHADE implementations. Finally the work is concluded
in section 5.

2. A Brief Review of Differential Evolution

2.1. Differential Evolution (DE)

DE starts with a random generated vector population
called parameter vectors or gnomes. These vectors are used
to explore the problem landscape. A process of trial vector
generation and selection is repeated until some termination
criterion is encountered. Subsequent generations in DE are
usually denoted by G = 0, 1, ..., GMAX . Additionally, the
ith individual in population P (G) is usually denoted by
Xi

G(i = 1, 2, ..., NP ) where NP is the population size.

2.1.1. Mutation. In each generation G, a mutant vector
vi,G is generated from an existing population member xi,G

by applying some mutation strategy. The most common
mutation strategies in DE are:

rand/1:

vi,G = xr1,G + F · (xr2,G − xr3,G) (1)

rand/2:

vi,G = xr1,G + F · (xr2,G − xr3,G)

+ F · (xr4,G − xr5,G) (2)

best/1:

vi,G = xbest,G + F · (xr1,G − xr2,G) (3)



2.1.2. Crossover. After generating the mutant vector vi,G,
it is crossed with the parent xi,G in order to generate trial
vector ui,G. Binomial Crossover, the most commonly used
crossover operator in DE, is implemented as follows:

uj,i,G =

{
vj,i,G if rand[0, 1) ≤ CR or j = jrand
xj,i,G otherwise

(4)

2.1.3. Crossover. After all of the trial vectors ui,G, 0 ≤
i ≤ N have been generated, a selection process determines
the survivors for the next generation. The selection operator
in standard DE compares each individual xi,G against its
corresponding trial vector ui,G, keeping the better vector in
the population.

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise

(5)

2.2. State of the art DE algorithms

2.2.1. SHADE. Success-History based Adaptive DE
(SHADE), is an enhancement to JADE [5], [6] which uses a
history based parameter adaptation scheme [7], [8]. SHADE
uses a historical memory MCR,MF which stores sets of
CR,F values that have been found to perform well in the
past. SHADE maintains a diverse set of parameters to guide
control parameter adaptation as search progresses.

In addition, SHADE implements a randomized approach
to setting the control parameter value p in the current-to-
pbest/1 mutation strategy. This parameter is used to adjust
the greediness of the mutation strategy. While this parameter
is static and manually adjusted in JADE, in SHADE it is
generated for each individual xi, according to the equation
by generation:

pi = rand[pmin, 0.2] (6)

Experimentally, SHADE was shown to outperform pre-
vious DE variants, including JADE, on a large set of bench-
mark problems [7].

3. Different DE and SHADE implementations

In this section, we study different implementation strate-
gies that may be used in two different components of
DE and SHADE algorithms. One is when implementing
the generation alternation code (i.e., selection operations or
survival mechanisms), and the other is when writing the
trial vector generation strategy (i.e., mutation and crossover
operations). Below we describe each of these in detail.

3.1. Selection Operations

The selection mechanism for both standard DE and state-
of-the-art DE algorithms is straightforward:

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise

(7)

This general strategy dictates that an individual is to be
compared to the trial vector and the one with better fitness
value should be kept. When the actual implementation of
this mechanism takes place (i.e., when writing the code)
some authors implement it as:

xi,G+1 =

{
ui,G if f(ui,G) < f(xi,G)
xi,G otherwise

(8)

After implementation, these two strategies only differ
from each other by one single symbol. Because this differ-
ence is so small, it may go unnoticed or simply ignored
by code authors. One reason authors may choose to ignore
the difference is because the implementation still keeps
the vector with the better fitness value, which is what the
general strategy dictates. However, in some cases replacing
individuals with trial vectors that have exactly the same
fitness value as them and no better may still improve the
general performance of the algorithm. One such case is
when the test function used to obtain the fitness value has
plateaus in its landscape.

Although rare, test functions in real-world optimization
problems may contain plateaus in their search landscape.
One example of this is when rounding numeric values. In
these cases, it is likely that multiple trial vectors will share
the same fitness value, including the best fitness value for the
current generation. When it is the case that multiple vectors
contain the highest fitness in the generation, excluding them
from the gene pool during the selection process may result
in underperformance issues during algorithm execution.

3.2. Mutation Operations

In the standard DE, for each vector xi in generation G,
a mutant vector vi is defined by:

vi,G = xr1,G + F · (xr2,G − xr3,G) (9)

Another mutation strategy is best/1, often used for faster
convergence. It includes genes from the current trial vector
with the highest fitness value:

vi,G = xbest,G + F · (xr1,G − xr2,G) (10)

An interesting case to consider is when the best fitness
value in generation G is shared among multiple trial vectors.
This could happen under different circumstances, especially
in test functions that include plateaus in their search space.
When this is the case, choosing a random parent from all
available choices is a better strategy than considering a



single option in the mutation strategy. Algorithms that do
not consider this particular case fail to feed their genes from
multiple parents and this results in restriction of the search
operations in the problem space, with lower performance as
the ultimate consequence.

4. Experimental Study

4.1. Impact of < and ≤ in Selection Operations

In order to verify the performance impact of implement-
ing the selection operations of the algorithms with “<” vs.
“≤”, we employ the step function as it generates plateaus
in the search space and whose mathematical definition is:

f(x) =

D∑
i=1

bzi + 0.5c2 (11)

In the experiments, “<” is compared with the original
“≤” for both standard DE and SHADE. The exact same pa-
rameter settings are used in both algorithms, the only actual
difference is changing “<=” to “<” in the programming
code. The total number of runs was ten for each algorithm.

The control parameters for both of the DE implementa-
tions are the following:

• Problem size D = 50 and population size N = 50.
• The crossover rate CR = 0.90 and the weighting

factor WF = 0.50.
• The maximum number of evaluations before giving

up was set to 60000.

The control parameters for both of the SHADE imple-
mentations are the following:

• Problem size D = 50, population size N = 50 and
memory size M = 50.

• The maximum number of evaluations before giving
up was set to 60000.

4.1.1. Results for the DE algorithm. Figure 1 shows the
convergence performance of “<=” and “<” for the DE
algorithm. As can be seen, both versions have the same
convergence speed. However, only four out of the ten runs
reach the optimal value in the “<” implementation, while
all ten runs reach the optimal value in “<=”. In other words,
implementing the selection operations with “<” causes the
algorithm to underperform about 60% of the time.

4.1.2. Results for the SHADE algorithm. Figure 2 shows
the convergence performance of “<=” and “<” for the
SHADE algorithm. The results are similar to those of DE.
For SHADE, in the “<” implementation only three out of
the ten runs reach the optimal value, while in the “<=”
version eight out of ten succeed.

Figure 1. (<=) vs. (<) in DE.

Figure 2. (<=) vs. (<) in SHADE.

4.2. Impact of failing to consider cases when mul-
tiple trial vectors share the best fitness value in
Mutation Operations

In the following experiments, we use the step function
from Eq. (11) in order to evaluate different algorithm imple-
mentations with heavy occurrence of plateaus in the search
space. Moreover, we employ the original CEC2014 standard
benchmark function set in order to test common and well
known benchmarking functions and not only functions that
guarantee the presence of multiple trial vectors containing
the same fitness value.

In the first experiment, we compare the performance
of an implementation of DE that uses the best/1 mutation
strategy from Eq. (10) with another implementation that
uses the best/rand mutation strategy. We do the equivalent
comparisons with three different implementations of the
SHADE algorithm. The first implementation is the standard



implementation using CurrentToPbest/random strategy. The
second version is a slightly modified algorithm that accesses
in a non-random way the external archive that contains the
fittest vectors of previous generations. The third implemen-
tation uses CurrentToPbest without randomization.

For this experiment, our performance measurement is
given by the average number of fitness evaluations in suc-
cessful runs divided by the number of successes. Lower
means better. In addition, the step function from Eq. (11)
is used as the test function for the search space. The total
number of runs was fifty for each algorithm.

The control parameters for both of the DE implementa-
tions are the following:

• Problem size D = 10, 20, 30, 40, 50.
• Population size N = 100.
• The crossover rate CR = 0.90 and the weighting

factor WF = 0.70.
• The maximum number of evaluations before giving

up was set to 2,000,000.

The control parameters for all three of the SHADE
implementations are the following:

• Problem size D = 10, 20, 30, 40, 50, 60, 70, 80, 90,
100.

• Population size N = 100 and memory size M = 100.
• The maximum number of evaluations before giving

up was set to 2,000,000.

4.2.1. Results for the DE algorithm. Figure 3 shows the
average number of evaluations per success rate for both of
the DE implementations, lower is better. As the graph shows,
the performance of the best/1 algorithm decreases as the
size of the problem increases. By the time the problem size
reaches 50, the performance of the best/random algorithm is
two orders of magnitude better than its best/1 counterpart.

4.2.2. Results for the SHADE algorithm. Figure 4 shows
the average number of evaluations per success rate for
all three of the SHADE implementations. No significant
performance differences take place before problem size of
D = 30.

For problem sizes of D = 40 and higher, the perfor-
mance difference between the three implementations seems
to grow steady. The CurrentToPbest without randomization
performs the worst, at some points reaching a a difference
of two orders of magnitude from the standard SHADE
CurrentToPbest/random version.

4.2.3. Performance Evaluation on the CEC2014 Bench-
marks. The second experiment uses the CEC2014 bench-
mark set to evaluate the performance of both, DE and
SHADE algorithms for problem sizes of D = 10 and D =
30.

For the DE algorithm, we evaluated the performance of
(<=) vs. (<) and the performance of best/1 vs best/random.

Figure 3. Best/1 vs Best/random in DE.

Figure 4. CurrentToPbest/random vs. CurrentToPbest/1 in SHADE.

For the SHADE algorithm we evaluated the performance
of (<=) vs. (<) and also CurrentToPbest/random vs. Cur-
rentToPbest/1. Statistical significance testing was done using
the Wilcoxon Rank-Sum test with significant threshold of
p < 0.05.

4.2.4. Results for the CEC2014 Benchmarks. No signifi-
cant differences were found for the (<=) vs. (<) implemen-
tations in both standard DE and SHADE.

In the CurrentToPbest/random vs. CurrentToPbest/1 im-
plementations in SHADE significant differences were found
for both problem sizes of D = 10 and D = 30.

Table 1 shows the results for the CurrentToPbest/random
vs. CurrentToPbest/1 implementations for problem size of
D = 10. The table shows the mean and standard deviation
of the error (difference) between the best fitness values
found in each run and optimal value. The +,−,≈ in-
dicate whether the CurrentToPbest/1 implementation per-



TABLE 1. COMPARISON OF CURRENTTOPBEST/RAND WITH
CURRENTTOPBEST/1 IN SHADE ON THE CEC2014 BENCHMARK

FUNCTIONS (10 DIMENSIONS).

CurrentToPbest/Rand CurrentToPbest/1
F Mean (Std) Mean (Std)
F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F2 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F3 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F4 2.93e+01 (1.28e+01) 2.41e+01 (1.59e+01)≈
F5 1.65e+01 (5.65e+00) 1.70e+01 (5.96e+00)≈
F6 2.67e-04 (9.33e-04) 1.99e-01 (5.11e-01)≈
F7 4.13e-03 (4.04e-03) 1.66e-02 (1.15e-02)−
F8 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F9 2.68e+00 (8.52e-01) 2.91e+00 (1.02e+00)≈
F10 4.90e-03 (1.70e-02) 4.04e-02 (4.64e-02)−
F11 5.64e+01 (4.99e+01) 9.69e+01 (8.21e+01)−
F12 1.86e-01 (3.94e-02) 1.74e-01 (4.03e-02)≈
F13 8.01e-02 (1.42e-02) 8.42e-02 (1.51e-02)≈
F14 1.19e-01 (4.41e-02) 9.90e-02 (3.91e-02)+
F15 5.02e-01 (7.31e-02) 4.96e-01 (1.05e-01)≈
F16 1.51e+00 (2.99e-01) 1.53e+00 (3.11e-01)≈
F17 2.04e+00 (2.10e+00) 5.12e+01 (6.21e+01)≈
F18 1.13e-01 (1.10e-01) 2.83e-01 (3.66e-01)≈
F19 2.22e-01 (2.00e-01) 4.21e-01 (4.89e-01)≈
F20 2.61e-01 (1.05e-01) 2.37e-01 (9.57e-02)≈
F21 3.62e-01 (2.19e-01) 7.97e+00 (2.96e+01)≈
F22 1.63e-01 (4.53e-02) 3.51e+00 (7.08e+00)≈
F23 3.29e+02 (0.00e+00) 3.29e+02 (0.00e+00)≈
F24 1.08e+02 (1.53e+00) 1.09e+02 (1.48e+00)−
F25 1.21e+02 (1.54e+01) 1.40e+02 (3.86e+01)≈
F26 1.00e+02 (1.12e-02) 1.00e+02 (1.80e-02)≈
F27 6.55e+01 (1.32e+02) 1.79e+02 (1.92e+02)−
F28 3.83e+02 (3.86e+01) 4.11e+02 (7.21e+01)−
F29 2.22e+02 (5.43e-01) 4.03e+04 (2.86e+05)−
F30 4.69e+02 (1.94e+01) 4.95e+02 (4.39e+01)−

+ 1
− 8
≈ 21

formed significantly better (+), significantly worse (−), or
not significantly different better or worse (≈) compared
to CurrentToPbest/random. Seven of the test functions in
the CurrentToPbest/1 implementation, namely F7, F10, F11,
F24, F27, F28, F29 and F30 performed significantly worse
than their counterparts in CurrentToPbest/random.

Similarly, Table 2 shows the results for the Current-
ToPbest/random vs. CurrentToPbest/1 implementations for
problem size of D = 30. In this case nineteen of the
test functions in the CurrentToPbest/1 implementation per-
formed significantly worse and only one function performed
significantly better.

5. Conclusion

In this paper, we presented empirical performance eval-
uations of slightly different implementations of the standard
DE and state-of-the-art DE algorithms.

The experiments showed that for test functions contain-
ing plateau landscapes, both DE and SHADE implemen-
tations that only consider individuals with strictly greater
health value than their parent require a considerably large
number of evaluations before reaching the global minimum
value. Depending on the actual number of evaluations that
the algorithm is allowed to execute before giving up, a global

TABLE 2. COMPARISON OF CURRENTTOPBEST/RAND WITH
CURRENTTOPBEST/1 IN SHADE ON THE CEC2014 BENCHMARK

FUNCTIONS (30 DIMENSIONS).

CurrentToPbest/Rand CurrentToPbest/1
F Mean (Std) Mean (Std)
F1 8.64e+02 (1.74e+03) 3.40e+03 (3.74e+03)−
F2 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F3 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F4 0.00e+00 (0.00e+00) 2.52e+00 (1.26e+01)≈
F5 2.02e+01 (2.54e-02) 2.02e+01 (2.75e-02)+
F6 1.49e+00 (2.33e+00) 1.60e+00 (1.46e+00)−
F7 0.00e+00 (0.00e+00) 3.62e-03 (6.37e-03)−
F8 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F9 1.95e+01 (3.34e+00) 2.61e+01 (5.84e+00)−
F10 4.49e-03 (8.65e-03) 2.43e+00 (1.66e+01)−
F11 1.55e+03 (1.79e+02) 1.56e+03 (2.50e+02)≈
F12 2.07e-01 (2.98e-02) 1.94e-01 (3.07e-02)≈
F13 1.96e-01 (2.79e-02) 2.52e-01 (4.50e-02)−
F14 2.23e-01 (3.35e-02) 2.36e-01 (3.94e-02)≈
F15 2.85e+00 (3.36e-01) 3.06e+00 (4.54e-01)−
F16 9.39e+00 (2.92e-01) 9.48e+00 (3.98e-01)≈
F17 1.11e+03 (3.70e+02) 1.50e+03 (4.65e+02)−
F18 4.80e+01 (2.58e+01) 1.50e+02 (4.83e+01)−
F19 4.53e+00 (7.62e-01) 6.59e+00 (8.45e+00)−
F20 1.00e+01 (5.86e+00) 4.37e+01 (2.73e+01)−
F21 2.15e+02 (1.24e+02) 4.42e+02 (1.65e+02)−
F22 1.16e+02 (5.80e+01) 1.66e+02 (7.83e+01)−
F23 3.15e+02 (0.00e+00) 3.15e+02 (0.00e+00)≈
F24 2.24e+02 (9.71e-01) 2.29e+02 (6.10e+00)−
F25 2.04e+02 (9.70e-01) 2.04e+02 (1.12e+00)≈
F26 1.00e+02 (3.48e-02) 1.02e+02 (1.40e+01)−
F27 3.19e+02 (3.87e+01) 3.86e+02 (4.38e+01)−
F28 8.02e+02 (3.71e+01) 8.26e+02 (8.68e+01)−
F29 7.22e+02 (8.61e+00) 2.29e+05 (1.63e+06)−
F30 1.30e+03 (4.98e+02) 1.75e+03 (8.27e+02)−

+ 1
− 19
≈ 10

minimum value may never be found at all.
For functions that have a plateau landscape, both DE

and SHADE perform better if they consider for their gene
pool individuals with the same or better health value as the
current parent. In addition, our results show that these muta-
tion strategies still under-perform in well known benchmark
functions with no plateau landscapes, such as the CEC2014
set.

References

[1] R. Stron and K. Price, “Differential Evolution - A Simple and efficient
adaptive scheme for global optimization over continuous spaces,”
International Computer Science Institute, Berkeley, CA, Tech. Rep.
TR-95-012, March 1995.

[2] —–, “Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces,” J. Global Optimiz., vol.
11, no. 4, pp. 341-359, Dec. 1997.

[3] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the
State-of-the-Art,” IEEE Tran. Evol. Comput., vol. 15, no. 1, pp. 4-31,
2011.

[4] A. K. Qin, V. L. Huang, and P.N. Suganthan, “Self-adaptive differ-
ential evolution algorithm for numerical optimization,” in IEEE Evol.
Comput. CEC 2005, vol. 2. pp. 2251-2258, Sept. 2005.

[5] J. Zhang and A. C. Sanderson, “JADE: Self-adaptive differential evo-
lution with fast and reliable convergence performance,” in IEEE Evol.
Comput. CEC 2007, pp. 2251-2258, Sept. 2007.



[6] —–, “JADE: Adaptive Differential Evolution With Optimal External
Archive,” IEEE Tran. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009.

[7] R. Tanabe and A. Fukunaga, “Success-History Based Parameter Adap-
tation for Differential Evolution,” in IEEE Evol. Comput. CEC 2013,
pp. 71-78, 2013.

[8] —–, “Improving the Search Performance of SHADE using Linear
Population Size Reduction,” in IEEE Evol. Comput. CEC 2014, pp.
1658-1665, Jul. 2014.


